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Abstract: In this paper, we discuss low-temperature hopping-conductivity behavior in the insulating phase, in the absence of a
magnetic field. We conduct a theoretical study of the crossover from hopping to activated transport in a GaAs two-dimension-
al hole system at low temperatures, finding that a crossover takes place from the Efros-Shklovskii variable-range hopping (VRH)
regime  to  an  activated  regime  in  this  system.  This  conductivity  behavior  in  p-GaAs  quantum  wells  is  qualitatively  consistent
with the laws laid down in theories of localized electron interactions. Given sufficiently strong interactions, the holes in the local-
ized states are able to hop collectively.
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1.  Introduction

At  low  temperatures,  electrical  transport  in  two-dimensi-
onal (2D) disordered systems, for which energy states are gen-
erally  located  near  the  Fermi  level,  is  dominated  by  the  vari-
able-range  hopping  (VRH)  transport  mechanism,  where  the
density  of N(E)  states  is  assumed  to  be  constant  near  the
Fermi  level[1−6].  Based  on  this  mechanism,  several  studies
have  confirmed  the  existence  of  a  Coulomb  pseudo-gap  in
2D  systems,  where  the  density  of  the N(E)  states  is  linear  in
the vicinity of the Fermi level, EF, and vanishes at E = EF (N (E) =
A(E – EF))[7].  This  theoretical  formalism  has  been  experiment-
ally verified by other researchers[8].

When  the  temperature  is  sufficiently  low,  Mott  demon-
strated that the resistance between two close neighbors is no
higher  than  the  lowest  resistance,  but  that  it  is  necessary  to
take  into  account  remoter  neighbors[9].  In  the  insulating
phase,  transport  can be activated by a  similarity  in  temperat-
ure  between  localized  states  which  are  spatially  distant  but
close in terms of energy.

In  two dimensions,  conductivity  can be described by the
following equation[1, 2, 10−12]: 

σ (T) ≈ σexp
[−(T/T)p], (1)

where σ0 is  the  pre-factor, T0 is  the  charactersitic  temperat-
ure, p = 1/3 for 2D Mott VRH, p = 1/2 for Efros–Shklovskii (E–S)
VRH, and p = 1 for the activated regime.

The  pre-exponential  factor, σ0,  can  be  either  temperat-

ure  independent[13] or  temperature  dependent[14, 15],  based
on the type of scattering[16] and the interaction mechanism.

In this paper, we present the behavior of hopping conduct-
ivity  in  a  strongly  localized  state,  where  the  metal–insulator
transition (MIT) is approached from the insulating side.

The  experimental  data  which  we  theoretically  analyzed
was  obtained  from  a  2D  hole  gas  in  GaAs  by  Hamilton  and
co-workers[17].  The  samples  had  a  peak  mobility  of μ =  2.5  ×
105 cm2V–1s–1

2.  Results and discussion

Fig.  1,  shows a  plot  of  conductivity  dependence on tem-
perature  for  carrier  densities, np,  ranging  from  3.2  ×  1010 to
4.4 × 1010 cm–2.

The conductivity on the insulating side of the MIT (where
dσ/dT >  0  )  varies  according  to  the  law  represented  by  Eq.
(1),  and  cannot  be  interpreted  within  the  transport  frame-
work of localized independent electrons.

≃

The theory of  transport  between localized states  via  VRH
gives  precise  predictions  concerning  expected  temperature
dependencies.  These  theories  provide  for  a  temperature-de-
pendent  pre-factor  according  to  the  power  law σ0  T–m.
However,  as  this  dependence is  weaker  than the exponential
law, one might seek to adjust the conductivity curves as a func-
tion of temperature for densities np < nc = 4.6 × 1010 cm–2, us-
ing Eq. (1).

The  most  important  parameter  of  this  law  is  the  expo-
nent p,  which  permits  the  determination  of  carrier  transport
mechanisms.  Here,  we  assumed  an  independent  temperat-
ure pre-factor, and adjusted the curves, σ(T), based on Eq. (1),
with σ0, T0, and p as parameters.

In Fig.  2,  we  have  plotted  ln(σ)  as  a  function  of T−1/2,
T−1/3,  and T–1 for  different  densities.  Here,  we  observe  that
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the  data  are  a  close  fit  for  E–S  VRH  (p =  1/2),  Mott  VRH  (p =
1/3),  and  activated  hopping  (p =  1)  at  temperatures  below  a
critical  temperature  (Tc =  0.27  K);  however,  we  were  not  able
to determine the best exponent, due to the small range of con-
ductivities  under  examination.  To  make  an  exact  determina-
tion  of  the  dominant  transport-regime  type  in  this  investiga-
tion,  we  used  the  resistance-curve  derivative-analysis  meth-
od, (RCDA)[11, 18, 19].

Using Eq. (1), we can define the logarithmic derivative W,
as follows: 

W = dlnσ
dlnT

= p(T
T
)p. (2)

This expression can be written in the following form: 

lnW = A + plnT. (3)

We  can  then  determine  the  values  of  the  exponent p
from the slope: 

p = dlnW
dlnT

. (4)

The  results  are  shown  in Figs.  3 and 4.  This  approach
leads to an exponent, p, which varies with density. Fig. 5 sum-
marizes  the  exponent p obtained  at  various  densities.  The
standard  error  for  the  exponent p is  indicated  by  the  error
bars in Fig. 5.

At  temperatures T < Tc,  the  average  value  of  the  expo-
nent p was found to be 0.52 ± 0.08, which is close to the theor-
etical value p = 1/2. Therefore, E–S VRH is the dominant hop-
ping  regime  in  the  sample  studied  in  this  paper.  However,
the  value  of  the  exponent p at  temperatures T > Tc,  was
found to be equal to 1.23 ± 0.12. This result is consistent with
the theoretical value p = 1, which is characteristic of the activ-
ated  regime.  We  therefore  confirm  that  there  is  a  crossover
from  E–S  VRH  to  hopping,  which  is  activated  by  a  change  of
temperature.

The  activated  behavior  can  be  interpreted  as  the  open-
ing of a "hard" gap at the Fermi level, EF, due to a Coulomb in-
teraction,  as suggested by Kim et al.[20].  In particular,  this  gap
can  characterize  the  formation  of  a  Wigner  crystal  type  of
ordered  electronic  phase,  for  which  a  simple  activated  law
can  be  expected  to  apply[21].  In Fig.  6,  the  activation  energy,

KBT0,  and  the  characteristic  temperatures  (TES and TMott)  de-
crease  linearly  at  low  temperatures  when  the  density  in-
creases,  and  tend  towards  zero  at  a  density  of npc =  4.5  ×
1010 cm–2.

The  activated  law  can  also  be  ascribed  to  transport  in  a
percolating  system:  when  a  system  consists  of  metal  islands
separated  by  insulating  zones,  the  transport  of  carriers  oc-
curs  by  activated  hopping  from  one  island  to  another.  This
type of analysis has already been performed in the context of
transitions  in  the  quantum  Hall-effect  regime[22, 23],  which  is
now recognized to have percolation transitions[24, 25]. The per-
colation  model  gives  a  good  description  of  the  disorder,  but
it neglects interactions, which play an essential role in electron-
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Fig. 1. Adjustment of conductivity dependence of temperature for 2D
p-GaAs system sample for different carrier densities.
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Fig. 2. ln(σ) as (a) T–1/2, (b) T–1/3 and (c) T–1 of the sample and linear fits
where the prefactor σ0 is independent on temperature.
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ic transport. In fact, electron–electron interactions are import-
ant  in  2D-semiconductor  systems,  since  they  can  form  new
phases,  such as  Wigner  crystals,  Mott  insulators,  and exciton-
ic insulators[26, 27].

When  we  take  into  account  the  correlated  hopping
between  several  electrons,  the  result  is  a  decrease  in  activa-
tion  energy,  as  is  the  case  here.  The  authors  of  Refs.  [14, 28]
have  shown  that  the  electrons  in  n-GaAs  heterostructures
hop  collectively,  but  that  the  correlations  between  electrons
do not modify the density of states (DOS) calculated for inde-
pendent electrons (in other words, the DOS remains linear).

≃
With  regard  to  the  pre-factor,  we  obtained  values  of  the

pre-factor σ0  1.01 e2/h (For p = 1), which is very close to the
universal value e2/h found in Refs. [29–31]. The universal char-

≃

acter  of  the  pre-factor  in  the  non-screened  regime  seems  to
be due to the interactions between holes,  which allows us to
envisage  a  hopping  mechanism  generated  by  the  interac-
tions  between  holes.  The  E–S  pre-factor σES was  found  to  be
between  1.23  and  2.16 e2/h;  however,  the  Mott  pre-factor
was found to be equal to σMott  2.8 e2/h, and independent of
both temperature and density. These observations are incom-
patible with a mechanism where hopping is  generated by an
electron–phonon interaction, for which a dependence in tem-
perature  and density  could  be expected,  and therefore  these
observations  are  attributed  to  a  different  hopping  mechan-
ism, related to the interactions between carriers.

rs rs =
m∗e

πh̷ε√πnp

For  disordered  electronic  systems  at  low  temperatures,

the  interaction  parameter ,  defined  by ,  is

high,  the electron–electron collision time is  much lower  than
the electron–phonon collision time, and the hopping mechan-
ism  is  assisted  by  electron–electron  interactions.  In  this  case,
the energy required to make a hop does not come from phon-
ons,  but  emanates  instead from another  electron,  coupled to
the electron making the hop.

3.  Conclusion

Our  theoretical  investigation  of  the  2D  p-GaAs  system
shows  the  existence  of  a  crossover  from  the  Efros–Shklovskii
variable-range hopping regime (E–S VRH), where a soft gap is
created (because the state density is only canceled at a single
point, and not at an energy interval),  to the activated regime,
where a “hard” gap opens at the Fermi level, EF, due to a Cou-
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lomb interaction.
At lower carrier densities, conductivity dependencies sup-

port  a  law  that  is  simply  activated  at  low  temperatures,  and
which is not supported by localization theories relating to inde-
pendent  electrons.  These  characteristics  are  typical  of  trans-
port  in  a  collective  disordered  hung  phase,  but  can  also  be
interpreted in the context of a percolating system.
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